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'Statement of Problem:

In recent years it has been recognized that glia of the nervous system
participate in the acute management of the ionic and neurohumoral milieu of
the neural micr.environment. It is the glia that modulate changes in the
ionic environment of nerve fibers and synaptic regions of the nervous system
may influence excitability properties of nerve cells, release of transmitter,
propagation velocity and safety factors for excitation and branch point action
potential conduction. The questions addressed by this program of research are
(1) what are the specific roles of the glia in neural microenvironment homeos-
tasis (2) what mechanisms of communication exist between neurons and glia and
(3) what changes in physiological properties of glia are induced by neural
activity.

Our findings since the beginning of this project can be summarized as
follows:

1. Glutamate and potassium released by the excited nerve fiber acts as the
signal to the surrounding glia.

2. The release of glutamate and potassium appear to be coupled so that the
quantity of glutamate released is in direct proportion to the potassium
released thus providing an appropriate signal to the glial cell for the
rapid clearance of the excess potassium that tends to appear in the
perineural space during excitation.

3. The Schwann cell (glial cell) has, on its membrane, a specific non-MNDA
(quisqualate/kainate) type glutamate which activates 2 separate process-
es.

a. opening of a sodium ion channel that tends to depolarize the
membrane potential of the Schwann cell. The function of this
particular channel is unknown but we have speculated that the
sodium that enters the glial cell under these circumstances in-
sures that the sodium/potasssium transporter is primed for potass-
ium uptake processes by the sodium pump.

b. activation of an increase in intracellular ionic calcium via an
inositol phosphate second messenger that is required for the
release of acetylcholine from the Schwann cell. ACh acts on an
Schwann cell autoreceptor, coupled to a c-AMP generating mechgan-
ism that is ultimately responsible for a chloride-dependent
Schwann cell hyperpolarization.

4. The Schwann cell hyperpolarization, because it is due to a decrease in
chloride permeability, decreases the efflux of potassium from the
Schwann cell. This allows an increase in nerve potassium efflux to an
amount equivalent to the decrease in glial potassium efflux without
increasing perineural potassium concentration. When excessive activity
tends to cause accumulation of potassium both sodium/potassium/2chloride
cotransport activity and sodium/potassium antiport transport are also
activited in the glial cell to insure that the perineural microenviron-
ment concentration of potassium remains consistent with preservation of
neural excitability.

5. Enzymes of the glutamate-glutamine neurotransmitter cycle have been
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shown to exist in the intact nerve -glial cell preparation used in these
studies as it has been identified in mammalian nervous systems. That
is, glutamine synthetase, the enzyme required for conversion of glu-
tamate to glutamine is almost exclusively compatmentalized to the glial
cell while high concentrations of glutaminase are found in both glia and
nerve. These findings are consistent with the concept that the glia
have a primary role in removing neuroactive substances from the neural
microenvironment before they accumulate to toxic levels. The presence
of glutaminease in both cells is consistent with the metabolic impor-
tance of glutamate in general cell metabolism of all cells.

6. In keeping with the strong physiological coupling betweeen nerve cells
and their associated glia and the large transport activity of the glia
we have also determined that approximately 90% of the metabolic activity
of intact nerve tissue can be accounted for by glial cells and that the
level of acticity at any time is dependent on the metabolic state of the
nerve cells.

7. In cultured mammalian Schwann cells we have determined that the normal
resting membrane potential of these cells is low (about -45 mV) and
similar to the resting potential of intact glia of the invertebrate
nervous systems we have been using for in vivo studies.

8. In mammalian Schwann cells there is a strong coupling between the activ-
ity of the sodium/potassium/2 chloride cotransporter and the sodium
pump. Increasing c-AMP of the Schwann cell activates both transporter
systems. A long term requirement for high sodium pump activity results
in an increase in its activity through the process of translocation of
sequestered intracellular pump molecules to the plasma membrane.

9. Most recently we have been examining the manner in which mammalian glia
deal with proton transport and have found them to be active pH buffers
for extracellular space in addition to the requirement to maintain
intracellular pH for intracellular enzymatic activity.
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